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1 PORTRAIT STYLIZATION DETAILS
Segmentation Models: The avatar segmentation model is trained
using 20k randomly sampled avatar vectors with neural pose, ex-
pression and illumination. For real image segmentation, we used
an open-source pre-trained BiSeNet module1 [Yu et al. 2018].

Distribution Prior W: To sample W+ distribution prior, we in-
verse CelebA dataset [Liu et al. 2015] into W+ space using a pre-
trained e4e encoder [Tov et al. 2021].

Normalized Style Exemplar Set Y: For training stylized gen-
erator G𝜙𝑡

, we synthetically rendered a diverse set of 150 avatar
imageries with normalized facial expressions.

2 AVATAR PARAMETERIZATION DETAILS
2.1 Imitator
To train our module in a self-supervised way, we plug-in a differ-
entiable neural renderer (i.e. imitator) in our learning framework.
As we mentioned in the main paper, the imitator can take a re-
laxed avatar vector as input, although the imitator itself is trained
with strict avatar vector. No matter the input is a relaxed or strict
avatar vector, it can produce a valid rendering. In this way, we can
supervise the training in image space without any ground-truth
for the parameters. Due to the differentiability of the imitator, the
parameterization stage can be trained with gradient descent. To
achieve high fidelity rendering quality, we leverage the StyleGAN2
generator [Karras et al. 2019] as our backbone, which is capable of
generating high quality renderings matching the graphics engine.
The imitator consists of an encoder E𝑖 implemented using MLP and
a generator G𝑖 adopted from StyleGAN2. The encoder translates
an input avatar vector to a latent code 𝑤+. The generator then
produces a high-quality image given the latent code.

Training: In order to fully utilize the image generation capability of
StyleGAN2, we propose to train the imitator in two steps: 1) we first
train a StyleGAN2 from scratch with random rendering samples
generated by our graphics engine to obtain a high-quality image
generator, without any label or conditions; then 2) we train the
encoder and the generator together with images and corresponding
labels, result in a conditional generator. Given an avatar vector 𝑣 ,
a target image I𝑔𝑡 and the generated image I𝑔𝑒𝑛 = G𝑖 (E𝑖 (𝑣)), we
use the following loss function combination to perform the second
step training:

L𝑖𝑚𝑖𝑡𝑎𝑡𝑜𝑟 = 𝜆1∥I𝑔𝑒𝑛 − I𝑔𝑡 ∥1 + 𝜆2L𝑙𝑝𝑖𝑝𝑠 + 𝜆3L𝑖𝑑 (1)

1https://github.com/zllrunning/face-parsing.PyTorch

Figure 1: Interpolation of avatar vectors. The neural ren-
dering imitator which temporarily replaces the traditional
graphics engine is differentiable, allowing the relaxation of
the strict constraint on discrete types. Linear interpolation
between two avatar vectors results in the gradual disappear-
ance of the beard and the gradual growth of the hair.

where the first term is an L1 loss, which encourages less blurring
than L2. In addition, L𝑙𝑝𝑖𝑝𝑠 is the LPIPS loss adopted from [Zhang
et al. 2018],

L𝑙𝑝𝑖𝑝𝑠 = ∥F (𝐼1) − F (𝐼2)∥2 (2)
where F denotes the perceptual feature extractor. L𝑖𝑑 is the iden-
tity loss which measures the cosine similarity between two faces
built upon a pretrained ArcFace [Deng et al. 2019] face recognition
network R,

L𝑖𝑑 = 1 − 𝑐𝑜𝑠 (R(𝐼1),R(𝐼2)) (3)
We set 𝜆1 = 1.0, 𝜆2 = 0.8, 𝜆3 = 1.0, empirically.

Interpolation property: Fig. 1 provides an example of the interpo-
lation property of the imitator which enables relaxed optimization
over the discrete parameters.

Implementation: To train the imitator, we randomly generate
100,000 images and corresponding parameters. Note that although
random sampling leads to strange avatars, our imitator can generate
images matching the graphics engine well by seeing plenty of
samples in the parameter space. Please refer to our supplementary
video for a side-by-side comparison.

We train StyleGAN2 using the official source code2 with images
of size 256 × 256 × 3, thus the latent code𝑤+ has a shape of 14 ×
512. We build the encoder E𝑖 with 14 individual small MLPs, each
is responsible for mapping from the input vector to one latent
style. Given the pretrained generator, we train the encoder and
simultaneously finetune the generator with Adam [Kingma and Ba
2015]. We set the initial learning as 0.01 and decay it by 0.5 each two
epochs. In our experiments, it takes around 20 epochs to converge.

2.2 Mapper
We use CelebA-HQ [Lee et al. 2020] and FFHQ [Karras et al. 2019]
as our training data. To collect a high quality dataset for training,
2https://github.com/NVlabs/stylegan2-ada-pytorch
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we use the Azure Face API 3 to analyze the facial attributes and
keep only facial images that meet our requirements:

1) within a limited pose range (𝑦𝑎𝑤 < 8◦, 𝑝𝑖𝑡𝑐ℎ < 8◦, 𝑟𝑜𝑙𝑙 < 5◦)
2) without headwears
3) without extreme expressions
4) without any occlusions

Finally, we collect 21,522 images in total for mapper training.
The input is an 18 × 512 latent code taken from the Stylization

module. Each one of the 18 layers latent code is passed to an indi-
vidual MLP. The output features are then concatenated together.
After that, we apply two MLP heads to generate continuous and
discrete parameters separately.

We apply a scaling before the softmax function for discrete pa-
rameters:

S(𝑥) = 𝑒𝛽𝑥𝑘

Σ𝑁
𝑖=1𝑒

𝛽𝑥𝑖
, 𝑘 = 1, ...𝑁 (4)

where 𝛽 > 1 is a coefficient that performs non-maximum suppres-
sion over some types that contribute less than the dominant ones,
and 𝑁 is the number of discrete types. During training, we gradu-
ally increase the coefficient 𝛽 to perform an easy-to-hard training

by decreasing the smoothness. Empirically, we increase 𝛽 by 1 for
each epoch. We train the mapper for 20 epochs.
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